Сокращение буквенных выражений. Упрощение выражений

Упрощение логических выражений

Сокращение буквенных выражений. Упрощение выражений

Для написания любой логической функции может быть использовано логическое выражение, после чего можно составить логическую схему. Как правило, все логические выражения упрощают для получения максимально простой и дешевой логической схемы. В сущности, логическая схема, выражение и логическая функция, являются тремя различными языками, повествующими об одном и том же.

Логические выражения упрощают при помощи различных законов алгебры логики. Часть преобразований напоминает преобразования формул, выполняемые в классической алгебре (например, применение сочетательного и переместительного законов, вынесение за скобки равенства общего множителя и так далее). Для других преобразований используют свойства, которых лишены операции классической алгебры.

Любые законы алгебры логики выводят для главных логических операций следующим образом: НЕ – инверсия (то есть, отрицание); ИЛИ – дизъюнкция (то есть, логическое сложение); И – конъюнкция (то есть, логическое умножение).

Закон двойного отрицания состоит в том, что операция НЕ является обратимой: если ее использовать два раза, логическое значение в результате останется неизменным.

Сущность закона исключенного третьего состоит в том, что каждое логическое выражение при любых условиях является истинным, либо ложным. Если A=1, тогда A=0, а также наоборот. Конъюнкция данных величин всегда равняется 0, дизъюнкция равна 1.

Закон повторения и операции с константами легко можно проверить, используя таблицы истинности операций ИЛИ и И.

Сочетательный и переместительный законы имеют такой же вид, как в математике. Аналогия с привычной всем классической алгеброй.

Для дизъюнкции распределительный закон состоит просто в раскрытии скобок. Для конъюнкции выражение неизвестно, в математике подобное равенство является неверным. Начнем доказывать с правой части. Сначала раскроем скобки:

(A+B)⋅(A+C)=A⋅A+A⋅C+B⋅A+B⋅C

Используем закон повторение, гласящий, что A⋅A=A,

Затем A⋅A+C⋅A=A+C⋅A=A⋅(1+C)=A⋅1=A

A+A⋅B=A⋅(1+B)=A⋅1=A, следовательно, (A+B)⋅(A+C)=A+B⋅C.

Мы доказали равенство.

Правил, используемые для раскрытия инверсии сложных выражений, назвали именем известного логика и математика де Моргана. Суть состоит в том, что общее отрицание не только распространяется на отдельные выражения, а еще и дизъюнкция заменяется конъюнкцией (а также наоборот). Для доказательства данных правил используются таблицы истинности.

Основная часть аксиом и законов алгебры логики записаны попарно. Внимательно изучая пары, можно сформулировать принцип двойственности, звучащий следующим образом: если осуществить в тождестве замены конъюнкции, а также дизъюнкции. И также элементов 1 и 0 (при их наличии), получится тождество. Данное свойство именуют принципом двойственности.

Упрощения логических выражений в примерах

Формула, вытекающая из распределительного закона. При ее выведении применили вышеупомянутое правило де Моргана для дизъюнкции, а также использовали закон двойного отрицания, после чего сомножитель X, вынесли за скобку, тогда как в скобках получили закон исключённого третьего, а также применили операцию с константами.

Пример первый

Кто из рабочих, обозначенных, как A, B, C, D работает на заводе, а кто нет, если нам даны следующие условия:

  • если работает A либо работает B, тогда не работает C;
  • если не работает B, тогда работает D, а также работает C.

Решение задачи. Обозначим несколько простых высказываний:

  1. A рабочий A на заводе работает;
  2. B рабочий B на заводе работает;
  3. C рабочий C на заводе работает;
  4. D рабочий D на заводе работает.

Сформулировав данные из условия при помощи этих простых высказываний, получим следующее:

Получаем следующую конъюнкцию: ((A+B)→C)⋅(B→C⋅D)⋅C.

После упрощения данной формулы получаем, что A равно 0, B равно 1, C равно 1, D равно 1.

Ответ: ученик A на заводе не работает, а ученики B, C, D играют.

В этом примере применено правило де Моргана, затем использован распределительный закон, после этого применен закон исключенного третьего, потом использован переместительный закон. За ним реализован закон повторения, потом опять применен переместительный закон и, наконец, использован закон поглощения.

Чтобы отыскать решения логического уравнения можно также применить упрощение логических выражений.

Нужно отыскать все решения данного уравнения

Применив правило де Моргана, получим

B+C+A¯+A¯⋅C¯+D=0

а затем применяем закон поглощения и получаем

B+C+A¯+D=0

Чтобы логическая сумма равнялась нулю, все слагаемые должны равняться нулю, из чего следует, что

A равно 1, B равно 0, C равно 0, D равно 0.

Источник: https://sciterm.ru/spravochnik/uproshhenie-logicheskih-vyrazheniy/

Формулы сокращённого умножения (ФСУ): таблица и применение

Сокращение буквенных выражений. Упрощение выражений

1001student.ru > Математика > Формулы сокращённого умножения (ФСУ): таблица и применение

Одной из первых тем, изучаемых в курсе алгебры, являются формулы сокращённого умножения.

В 7 классе они применяются в самых простых ситуациях, где требуется распознать в выражении одну из формул и выполнить разложение многочлена на множители или, наоборот, быстро возвести сумму или разность в квадрат или куб.

В дальнейшем ФСУ используют для быстрого решения неравенств и уравнений и даже для вычисления некоторых числовых выражений без калькулятора.

Как выглядит список формул

Существует 7 основных формул, позволяющих быстро осуществить перемножение многочленов в скобках.

Иногда в этот список также включается разложение для четвёртой степени, которое следует из представленных тождеств и имеет вид:

a⁴ — b⁴ = (a — b)(a + b)(a² + b²).

Все равенства имеют пару (сумма — разность), кроме разности квадратов. Для суммы квадратов формула не приводится.

Остальные равенства легко запоминаются:

  1. Разница между квадратом суммы и разности заключается в знаке перед удвоенным произведением величин.
  2. В случае с суммой и разностью кубов в (a ± b) знак совпадает со знаком (a3±b3). Второй сомножитель — так называемый неполный квадрат, поскольку он напоминает квадратный трёхчлен, возникающий после раскрытия скобок в квадрате суммы или разности. Здесь в ситуации с суммой появляется знак минуса перед ab; в противном случае знак заменяется на +.
  3. В кубе суммы все знаки положительные; в случае с разностью появляются минусы перед 3a²b и b³.

Следует помнить, что ФСУ работают в любом случае и для любых величин a и b: это могут быть как произвольные числа, так и целые выражения.

В ситуации, если вдруг не получается вспомнить, какой знак стоит в формуле перед тем или иным слагаемым, можно раскрыть скобки и получить тот же результат, что и после использования формулы. Например, если проблема возникла при применении ФСУ куба разности, нужно записать исходное выражение и поочерёдно выполнить умножение:

(a — b)³ = (a — b)(a — b)(a — b) = (a² — ab — ab + b²)(a — b) = a³ — a²b — a²b + ab² — a²b + ab² + ab² — b³ = a³ — 3a²b + 3ab² — b³.

В результате после приведения всех подобных членов был получен такой же многочлен, как и в таблице. Такие же манипуляции можно проводить и со всеми остальными ФСУ.

Применение ФСУ для решения уравнений

К примеру, нужно решить уравнение, содержащее многочлен 3 степени:

x³ + 3x² + 3x + 1 = 0.

В школьной программе не рассматриваются универсальные приёмы для решения кубических уравнений, и подобные задания чаще всего решаются более простыми методами (например, разложением на множители). Если заметить, что левая часть тождества напоминает куб суммы, то уравнение можно записать в более простом виде:

(x + 1)³ = 0.

Корень такого уравнения вычисляется устно: x = -1.

Аналогичным способом решаются неравенства. Для примера можно решить неравенство x³ — 6x² + 9x > 0.

В первую очередь необходимо разложить выражение на множители. Вначале нужно вынести за скобку x. После этого следует обратить внимание, что выражение в скобках можно преобразовать в квадрат разности.

Затем необходимо найти точки, в которых выражение принимает нулевые значения, и отметить их на числовой прямой. В конкретном случае это будут 0 и 3. Затем методом интервалов определить, в каких промежутках x будет соответствовать условию неравенства.

ФСУ могут оказаться полезными при выполнении некоторых расчётов без помощи калькулятора:

703² — 203² = (703 + 203)(703 — 203) = 906 ∙ 500 = 453000.

Кроме того, раскладывая выражения на множители, можно легко выполнять сокращение дробей и упрощение различных алгебраических выражений.

Примеры задач для 7−8 класса

В заключение разберём и решим два задания на применение формул сокращённого умножения по алгебре.

Задача 1. Упростить выражение:

(m + 3)² + (3m + 1)(3m — 1) — 2m (5m + 3).

Решение. В условии задания требуется упростить выражение, т. е. раскрыть скобки, выполнить действия умножения и возведения в степень, а также привести все подобные слагаемые. Условно разделим выражение на три части (по числу слагаемых) и поочерёдно раскроем скобки, применяя ФСУ там, где это возможно.

  • (m + 3)² = m² + 6m + 9 (квадрат суммы);
  • (3m + 1)(3m — 1) = 9m² — 1 (разность квадратов);
  • В последнем слагаемом необходимо выполнить перемножение: 2m (5m + 3) = 10m² + 6m.

Подставим полученные результаты в исходное выражение:

(m² + 6m + 9) + (9m² — 1) — (10m² + 6m).

С учётом знаков раскроем скобки и приведём подобные слагаемые:

m² + 6m + 9 + 9m² 1 — 10m² — 6m = 8.

Задача 2. Решить уравнение, содержащее неизвестное k в 5 степени:

k⁵ + 4k⁴ + 4k³ — 4k² — 4k = k³.

Решение. В этом случае необходимо воспользоваться ФСУ и методом группировки. Нужно перенести последнее и предпоследнее слагаемое в правую часть тождества.

k⁵ + 4k⁴ + 4k³ = k³ + 4k² + 4k.

Из правой и из левой части выносится общий множитель (k² + 4k +4):

k³(k² + 4k + 4) = k (k² + 4k + 4).

Всё переносится в левую часть уравнения, чтобы в правой остался 0:

k³(k² + 4k + 4) — k (k² + 4k + 4) = 0.

Снова необходимо вынести общий множитель:

(k³ — k)(k² + 4k + 4) = 0.

Из первого полученного сомножителя можно вынести k. По формуле краткого умножения второй множитель будет тождественно равен (k + 2)²:

k (k² — 1)(k + 2)² = 0.

Использование формулы разности квадратов:

k (k — 1)(k + 1)(k + 2)² = 0.

Поскольку произведение равно 0, если хотя бы один из его множителей нулевой, найти все корни уравнения не составит труда:

  1. k = 0;
  2. k — 1 = 0; k = 1;
  3. k + 1 = 0; k = -1;
  4. (k + 2)² = 0; k = -2.

На основании наглядных примеров можно понять, как запомнить формулы, их отличия, а также решить несколько практических задач с применением ФСУ. Задачи простые, и при их выполнении не должно возникнуть никаких сложностей.

Источник: https://1001student.ru/matematika/formuly-sokrashhyonnogo-umnozheniya-fsu-tablitsa-i-primenenie.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.